作业帮 > 数学 > 作业

求定积分∫(上2下1)根号下(x^2-1)/xdx

来源:学生作业帮 编辑:喵喵机考试网作业帮 分类:数学作业 时间:2021/12/05 18:44:48
求定积分∫(上2下1)根号下(x^2-1)/xdx
由题意可得:先求∫√(x^2-1)/xdx的不定积分
令√(x^2-1)=t,又上下限均大于0
所以x=√(t^2+1),dx=t/√(t^2+1)dt
所以∫√(x^2-1)/xdx=∫t/√(t^2+1)*[t/√(t^2+1)]dt
=∫t^2/(t^2+1)dt=∫dt-∫1/(t^2+1)dt
=t-arctant+C将t=√(x^2-1)代人可得
∫√(x^2-1)/xdx=√(x^2-1)-arctan√(x^2-1)+C
然后分别把积分的上下限代人相减可得
∫(上2下1)√(x^2-1)/xdx=√3-π/3